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ABSTRACT:  Assuming that the multi-objective optimization methods can be primarily classified with 
respect to the sources of inspiration of the methods, they can be divided into two following categories: 
(1) classical methods, and (2) methods inspired by natural systems, evolutionary methods in the peculiar-
ity. Evolutionary methods can be divided, considering the way the optimization criteria are accounted 
for, into two groups: (2.1) scalarising methods employing a substitute scalar objective function, and (2.2) 
methods employing the Pareto domination relation. In the case of the scalarising methods the formula-
tion of the objective function is a key factor for efficiency of the computational algorithm. This paper 
presents a scalarisation technique reformulate the original multi-objective problem of ship structural opti-
misation into a parametric single-objective optimisation problem applicable to application in evolution-
ary optimisation algorithms.

2  SCALARISATION PROCEDURE FOR 
EVOLUTIONARY multi-objective 
optimisation OF SHIP STRUCTURE

2.1  General

Assuming that the multi-objective optimization 
methods can be primarily classified with respect to 
the sources of inspiration of the methods, they can 
be divided into two following categories: (1) classi-
cal methods, and (2) methods inspired by natural 
systems, evolutionary methods in the peculiarity. 
Evolutionary methods can be divided, considering 
the way the optimization criteria are accounted for, 
into two groups: (2.1) scalarising methods employ-
ing a substitute scalar objective function as a single-
value absolute measure of quality of the generated 
variants of the trial solutions, and (2.2) methods 
employing the Pareto domination relation to clas-
sify the variants with respect to their quality. In the 
case of the scalarizing methods the most impor-
tant point of calculation tool for multi-objective 
optimization of ship structure is appropriate for-
mulation of parameterized objective function 
consisting in summing the optimization objectives 
with proper weight coefficients. The weight coef-
ficients values of this substitute objective function 
are proposed by the expert corresponding to the 
multi-objective optimization strategy. The simplest 
concept is the introduction of objective function 
F(x) as a linear combination of S partial optimiza-
tion objectives fs(x):

1  INTRODUCTION

Generally speaking, ship structural design con-
sists in selection and spatial arrangement of mate-
rial in the form of structural components (decks, 
bulkheads, hull sections) composed of secondary 
structural elements (stiffeners, plating etc.). The 
ship hull should provide safe ship operation at the 
least costs.

In the previous papers Sekulski (2011a, 2011b, 
2011c, 2013) the evolutionary algorithm based 
on the genetic algorithm procedures was pro-
posed to the optimization of  the seagoing ship 
structure using in the process of  the selection 
the combined fitness function including in one 
mathematical expression: (1) optimization objec-
tives, (2) penalty function for constraints viola-
tion, and (3) domination attributes (dominance 
rank as well as dominance count). A practical 
example of  the application of  the developed 
algorithm has been presented, featuring the 
multi-objective optimization of  the structure of 
fast passenger-vehicle ferry concept named Auto 
Express 82 m.

In the cited papers the problem of  formulation 
of  the substitute scalar optimization criterion 
which, when fulfilling the appropriate mathemat-
ical conditions, can be taken directly as fitness 
function (x) controlling the simulated evolu-
tion of  the trial solutions was not addressed. This 
problem is therefore a motivation for the present 
paper.
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where ws are coefficients determining the weights 
assigned to particular optimization objectives, S 
is the number of objectives. The multi-objective 
optimization problem is in this way reduced to the 
substitute single-objective problem.

Formulation of  the objective function in the 
form of  substitute scalar optimization objective 
in form of  Equation  1 is a commonly accepted 
practice. Employing his method for genetic algo-
rithms, three cases should be considered depend-
ant on the types of  partial optimization criteria 
fs(x).

    i.	 In the case of a maximization problem all par-
tial optimization objectives, fs(x) → max!, sub-
stitute (aggregated) objective function is also 
maximized, F(x) → max! as in the case of the 
genetic algorithms is consistent with solve the 
problem of maximization of fitness function, 

(x)  →  max!, which is a measure of quality 
of generated solutions and directly influences 
probability of selection of generated individu-
als (variants) Back (1996), Coley (1999), Davis 
(1991), Goldberg (1989).

  ii.	 In the case of  a minimization problem all 
partial optimization objectives, fs(x) → min!, 
substitute (aggregated) objective function is 
also minimized, F(x) → min!. In this case, 
substitute objective function F(x) (Eq. 1) can 
not be directly adopted as the fitness func-
tion (x).

iii.	 In practice we have to deal with mixed prob-
lems where certain criteria are maximized 
(max!) and others minimized (min!). We note, 
however, that the genetic algorithms solve the 
problem of maximization of fitness function, 

(x) → max!, therefore, in the case of (ii) and 
(iii) due to this fact, to employ the genetic 
algorithms the minimization or mixed multi-
objective optimization problem (1) must be 
transformed to the corresponding substitute 
single-objective maximization problem.

In the next part of  the Section a proposition 
will be presented and discussed of  transformation 
of  the optimization problem (1). It is consisted of 
the following stages: formulating utility functions 
of  optimization objectives (Subsection  2.2), for-
mulating a penalty function (Subsection  2.3), 
formulating a dominance rank (Subsection  2.4), 
formulating a dominance count (Subsection 2.5), 
and formulating a combined fitness function 
(Subsection 2.6).

2.2  Utility functions

Partial optimization objectives appearing in 
Equation  1 were replaced by properly formu-
lated utility functions of these objectives: fs(x) → 
us(fs(x)):
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where fs,max are the greatest values of respective 
optimization objective anticipated in computa-
tions, rs are positive exponents of respective util-
ity functions. The values of the utility function are 
dimensionless and normalized to unity, that means 
us(fs(x)) → [0,  1]. Mathematical form of utility 
functions also assures, that substitute scalar objec-
tive function is maximized for any types of optimi-
zation objectives, that means:
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The appropriate values of fs,max and rs are selected 
by the user on the basis of the test calculations to 
achieve the required convergence of the algorithm. 
The distribution of the utility function for exem-
plary values of parameters fs,max and rs is presented 
in Figure 1.

2.3  Penalty functions

A computer code for optimization of ship structures 
should allow for accounting for a series of design 
constraints, such as the local and overall strength. 
On the other hand, implementation of the genetic 
algorithms requires that the equivalent problem 
is formulated without any constraints. Observing 
that the genetic algorithms do not require continu-
ity nor the existence of derivative functions, a con-
cept of the penalty function has been employed by 
many researchers (Fox 1971, Ryan 1974, Reklaitis 
et  al. 1983, Vanderplaats 1984). The augmented 
objective function of the unconstrained maximiza-
tion problem f(x) has been formulated as a penalty 
function:
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where: us(x)—utility function of objective func-
tion fs(x), S—number of optimization objectives, 
Pp(x)—component of the penalty function for the 
violation of p-th constraint, wp—penalty coefficient 
for the violation of p-th constraint, rp—exponent 
of p-th component, P—number of constraints.

Mathematical form of the exponential form 
of the penalty functions, the same for all the con-
straints, was formulated so that the penalty func-
tion values Pp(x) are dimensionless and normalized 
to unity. For example, in the case of rule require-
ment regarding main deck plate thickness the pen-
alty function takes the form:
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where: t—actual (generated by the algorithm) plate 
thickness, trule—rule thickness. The appropriate val-
ues of wp as well as rp are selected by the user on 
the basis of test calculations to achieve to desired 
convergence of the algorithm. Distribution of the 
penalty function for exemplary values of parameter 
rp is presented in Figure 2.

The form of the components of the penalty 
function taken for the analysis has a very inter-
esting interpretation with respect to scantlings of 
the structural elements of a ship hull. It is shown 
in Figure 2, for example, that values of the plate 
thickness t, less than the values required by the 
rules trule, t − trule < 0, are forbidden, as they do not 
meet the constraint. It follows that these values are 
not preferred (promoted, awarded) in the selec-
tion process. Individuals with the corresponding 
genes will be penalized with small values of the 
penalty function.a) From the distribution of the 
penalty function it follows that possibility of sur-
vival of solutions violating the strictly formulated 
constraints is admissible, even though with a tiny 
probability. Due to this fact there is a possibility 

Figure 1.  Graphical illustration of the concept of utility function us(x) of optimization objectives fs(x).

a)The proposed realisation of selection causes that some 
individuals have a chance to participate in the repro-
duction which slightly violate the imposed constraints 
but have other advantageous features. In the next gen-
erations disadvantageous features can be removed or 
interchanged in the operations of mutation and cross-
ing, and the changed variant can turn to be very advan-
tageous solution. Such realisation of selection increases 
the capability of searching the solution space and makes 
it possible to overcome “barriers” and “gulleys” in the 
multimodal solution space.
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The adopted form of the penalty function can be 
interpreted similarly with respect to other param-
eters defining dimensions of the structural ele-
ments, e.g. section modulus, moment of inertia, 
cross-sectional area. Possibility to change the val-
ues of exponents rp in the areas, that is rp,I and rp,II, 
as well as fine fitting the shape of the penalty func-
tion (see Fig. 3) causes it to be very subtle and use-
ful tool in controlling evolutionary optimization 
of structures.

As the augmented objective function f(x) 
expressed by the relation Equation 4, with utility 
functions as well as penalty components dimen-
sionless and normalized to unity, is: (1) defined, 
(2) single-valued, (3) ascending, having real values 
and positive in the search space, it can be adopted 
directly as the fitness function.

2.4  Dominance rank

The scheme of multi-objective optimization pro-
posed in Equation  4 allows only for rough dif-
ferentiation of feasible solutions with regard to 
domination relation in Pareto sense and does not 
account for information about how many solutions 
are dominated by a given solution.

For the solving of the mentioned problem the 
author proposed a scheme in which the feasible 
solutions are ranked by the number of other solu-
tions dominated by them, relative to the number of 
feasible solutions in the current population. There-
fore, dominance rank Rfi of  i-th feasible solution is 
specified by an equation:
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N
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where dm(i, j)  =  1 when i dominates j, and dm(i, 
j) = 0 in other cases, i, j—indices of verified feasible 
solutions, Nfi – number of feasible solutions in the 
current population. Advantages of the proposed 
strategy are: (1) ease of calculations, (2) standardi-
zation of dominance rank values in [0, 1] range, 
and (3) ascending values of dominance rank for 
solutions approaching the Pareto front (lying at the 
edge of feasible set). Thanks to properties (2) and 
(3) the value of dominance rank calculated in the 
proposed way may be directly included in the fitness 
function. In such a case selection is going to pro-
mote feasible solutions located close to the Pareto 
front, while the solutions lying gradually further 
and further from the Pareto front are going to be 
promoted weaker and weaker, which is a numerical 
realization of selection pressure exerted on the solu-
tions located close to the Pareto front and which 
thus enhances the exploitation performance of the 

Figure  3.  Illustration of influence of parameter rp 
of  penalty function on course of function (Eq. 5):  
(a) r13 = r13,I = -10.0 for t – trule < 0, r13 = r13,II = -0.08 for  
t – trule ≥ 0 (soft selection); (b) r13 = r13,I = -5.0 for t – trule < 0, 
r13 = r13,II = -0.05 for t – trule ≥ 0 (dilution of soft selection); 
(c) r13 = r13,I = -30.0 for t – trule < 0, r13 = r13,II = -0.0 for  
t – trule ≥ 0 (concentrate of soft selection).

Figure 2.  Graphical illustration of concept of penalty 
function; r13 = r13,I = −10.0 for t − trule < 0, r13 = r13,II = −0.08 
for t − trule ≥ 0.

that the small number of solutions violating the 
constraints will be corrected in the next genera-
tions and will transmit other advantageous fea-
tures to the descendants improving the algorithm 
convergence. In the process of selection variants 
will be promoted of thickness slightly greater than 
required by the rules trule, t−trule > 0. The greater val-
ues of the plating thickness t will be less preferred 
as it is not necessary to increase the plate thickness 
excessively considering this constraint. Such indi-
viduals will be penalized for too large, despite their 
admissibility, values of the plate thickness t; it is a 
small value of the corresponding component of the 
penalty function which is the penalty in this case.b) 

b)Since so defined penalty function rewards good vari-
ants, it is natural to refer to it as a reward or preference 
function, rewarding or preferring good variants. Yet the 
common name: penalty function is used as it is done in 
the references.
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located far from the Pareto front, while the solu-
tions approaching the Pareto front are going to be 
promoted weaker and weaker, which is a numerical 
realization of selection pressure exerted on solu-
tions located far from the Pareto front and which 
thus enhances the exploratory properties of the 
algorithm, see Figure 4. Similarly as in the previ-
ous case, the disadvantage of the proposed strat-
egy is computational complexity N2.

As it has already been mentioned, the strategies 
for dominance ranking and the dominance count 
of  the feasible variants proposed by the author 
allows for their inclusion directly in the earlier 
formulated (Eq. 4) extended objective function of 
a unconstrained maximization problem f(x):
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where: Rfi(x)—dominance rank of feasible variant, 
wrank—dominance rank weight coefficient, Cfi(x)—
dominance count of feasible variant, wcount—dom-
inance count weight coefficient. Assuming zero 
values of the weight coefficients, wrank and wcount, the 
user can decide whether the corresponding domi-
nation attributes are on or off.

2.6  Conclusions

As combined objective function f(x) expressed 
by Eq. 8 is: (1) well defined, (2) single-valued, (3) 

Figure 4.  Graphical illustration of the dominance rank and dominance count concepts; f1 → min!, f2 → min!.

c)Two strategies of gaining and using knowledge on the 
solution space are used in the evolutionary algorithms: 
exploitation—allowing for finding many advantageous 
solutions located in the vicinity of local optima, thus rep-
resenting local efficiency of algorithm; and exploration—
allowing for investigating a large part of the estimation 
space to localize/identify areas which can potentially con-
tains advantageous solutions; in these regions the local 
optimization algorithms can be then applied or increase 
exploitation properties of the algorithm.

algorithmc), Figure 4. disadvantage of the proposed 
strategy is computational complexity N2.

2.5  Dominance count

Similarly, feasible solutions can be classified by the 
number of solutions dominating them, relative to 
the number of feasible solutions. Thus, evaluation 
dominance count Cfi of  i-th feasible solution is 
expressed by the formula:

C i
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where dm(j,  i)  =  1 when j dominates i, and 
dm(j, i) = 0 otherwise, i, j—indices of verified fea-
sible solutions, Nfi—number of feasible solutions 
in the current population. The dominance count 
defined in this way has the above mentioned prop-
erties (1) and (2), and property (3) ascending val-
ues of dominance count for the variants situated 
further and further from the Pareto front (located 
deep inside the feasible set). Thanks to proper-
ties (2) and (3) the value of dominance count cal-
culated in the proposed way may also be directly 
included in the fitness function—in such a case 
selection is going to promote feasible solutions 
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ascending, having real values and positive in the 
search space, it has been adopted directly as the 
combined fitness function:

( ) =  )   
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Eq. 9 makes it possible to include the domination 
attributes to the process of selection of trial solu-
tions. This concept is the key point of the proposed 
Combined Fitness Multi-Objective Genetic Algo-
rithm (CFMOGA) applied to the multi-objective 
optimization of the ship hull structure Sekulski 
(2014).

3  SUMMARY

The method for formulation of the substitute opti-
mization objective described in the present paper 
has been used for optimizing the ship structural 
design, Sekulski (2011a, 2011b, 2011c, 2013, 2014). 
Obtained results allow to formulate conclusions that 
the method is efficient and can be recommended for 
application in other multi-objective optimization 
algorithms. In each case it is necessary to perform 
test computations and investigate the efficiency of 
implemented computational procedures.
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